Problem: 0(1(1(2(x1)))) -> 1(0(1(3(2(x1))))) 0(1(1(2(x1)))) -> 4(1(0(1(2(x1))))) 0(1(1(2(x1)))) -> 0(1(4(1(3(2(x1)))))) 0(1(1(2(x1)))) -> 0(4(1(4(1(2(x1)))))) 0(1(1(2(x1)))) -> 4(1(0(3(1(2(x1)))))) 0(1(1(2(x1)))) -> 4(1(3(1(0(2(x1)))))) 0(1(1(5(x1)))) -> 4(1(0(1(5(x1))))) 0(1(1(5(x1)))) -> 5(4(1(0(1(x1))))) 0(1(1(5(x1)))) -> 0(4(1(0(1(5(x1)))))) 0(1(1(5(x1)))) -> 0(5(4(1(0(1(x1)))))) 0(1(1(5(x1)))) -> 1(0(1(3(1(5(x1)))))) 0(1(1(5(x1)))) -> 1(4(4(0(1(5(x1)))))) 0(1(1(5(x1)))) -> 3(0(1(5(4(1(x1)))))) 0(1(1(5(x1)))) -> 3(4(1(0(1(5(x1)))))) 0(1(1(5(x1)))) -> 3(4(1(5(0(1(x1)))))) 0(1(1(5(x1)))) -> 3(5(4(1(0(1(x1)))))) 0(1(1(5(x1)))) -> 4(1(0(1(5(3(x1)))))) 0(1(1(5(x1)))) -> 4(1(0(1(5(4(x1)))))) 0(1(1(5(x1)))) -> 4(1(3(1(0(5(x1)))))) 0(1(1(5(x1)))) -> 4(1(4(1(0(5(x1)))))) 0(1(1(5(x1)))) -> 4(4(1(5(0(1(x1)))))) 0(1(1(5(x1)))) -> 5(4(1(3(1(0(x1)))))) 0(1(2(0(x1)))) -> 0(2(4(1(0(3(x1)))))) 0(1(3(5(x1)))) -> 0(3(5(4(1(x1))))) 0(1(4(5(x1)))) -> 0(3(5(4(1(x1))))) 0(1(4(5(x1)))) -> 4(4(0(1(5(3(x1)))))) 0(2(4(5(x1)))) -> 4(0(2(3(5(x1))))) 0(2(4(5(x1)))) -> 4(4(0(2(5(x1))))) 0(2(4(5(x1)))) -> 4(0(3(2(3(5(x1)))))) 0(0(2(1(5(x1))))) -> 0(0(2(5(4(1(x1)))))) 0(0(2(4(5(x1))))) -> 0(0(4(4(2(5(x1)))))) 0(1(0(4(5(x1))))) -> 0(4(0(0(1(5(x1)))))) 0(1(0(5(0(x1))))) -> 4(1(5(0(0(0(x1)))))) 0(1(1(0(5(x1))))) -> 1(0(4(0(1(5(x1)))))) 0(1(1(2(0(x1))))) -> 0(4(1(2(1(0(x1)))))) 0(1(1(2(0(x1))))) -> 4(1(2(1(0(0(x1)))))) 0(1(1(3(5(x1))))) -> 4(1(0(1(3(5(x1)))))) 0(1(1(3(5(x1))))) -> 5(4(1(0(3(1(x1)))))) 0(1(1(4(2(x1))))) -> 0(4(1(4(1(2(x1)))))) 0(1(1(4(2(x1))))) -> 4(1(3(1(2(0(x1)))))) 0(1(1(4(2(x1))))) -> 4(2(4(1(0(1(x1)))))) 0(1(1(4(5(x1))))) -> 0(5(4(1(3(1(x1)))))) 0(1(1(4(5(x1))))) -> 0(5(4(1(4(1(x1)))))) 0(1(1(4(5(x1))))) -> 2(4(1(0(1(5(x1)))))) 0(1(2(0(2(x1))))) -> 0(4(0(1(2(2(x1)))))) 0(1(2(1(5(x1))))) -> 0(1(4(1(2(5(x1)))))) 0(1(4(5(0(x1))))) -> 0(5(4(1(0(3(x1)))))) 0(1(5(1(5(x1))))) -> 5(4(1(0(1(5(x1)))))) 0(2(0(1(5(x1))))) -> 1(0(0(2(3(5(x1)))))) 0(2(0(4(5(x1))))) -> 0(0(2(4(1(5(x1)))))) 0(2(0(5(0(x1))))) -> 0(2(5(0(3(0(x1)))))) 0(2(3(1(5(x1))))) -> 0(0(1(2(3(5(x1)))))) 0(2(3(1(5(x1))))) -> 0(2(5(3(4(1(x1)))))) 0(2(3(1(5(x1))))) -> 0(3(5(2(4(1(x1)))))) 0(2(3(1(5(x1))))) -> 2(0(4(1(3(5(x1)))))) 0(2(3(1(5(x1))))) -> 2(0(4(1(5(3(x1)))))) 0(2(3(1(5(x1))))) -> 2(3(5(3(0(1(x1)))))) 0(2(3(1(5(x1))))) -> 2(5(3(4(1(0(x1)))))) 0(2(3(1(5(x1))))) -> 4(1(0(5(2(3(x1)))))) 0(2(3(1(5(x1))))) -> 4(1(3(0(2(5(x1)))))) 0(2(3(1(5(x1))))) -> 4(1(5(2(0(3(x1)))))) 0(2(5(1(2(x1))))) -> 0(2(3(2(1(5(x1)))))) 0(2(5(1(5(x1))))) -> 0(3(5(2(1(5(x1)))))) 0(2(5(1(5(x1))))) -> 0(4(1(5(2(5(x1)))))) 0(2(5(1(5(x1))))) -> 2(4(1(5(0(5(x1)))))) 0(2(5(1(5(x1))))) -> 4(1(0(5(2(5(x1)))))) 0(2(5(1(5(x1))))) -> 4(1(5(5(2(0(x1)))))) 0(3(5(1(5(x1))))) -> 5(0(3(5(4(1(x1)))))) 0(4(2(0(2(x1))))) -> 0(0(4(3(2(2(x1)))))) 0(4(2(1(5(x1))))) -> 0(2(5(4(4(1(x1)))))) 0(4(2(1(5(x1))))) -> 0(4(1(5(3(2(x1)))))) 0(4(2(1(5(x1))))) -> 2(4(1(0(0(5(x1)))))) 0(4(2(1(5(x1))))) -> 2(4(1(3(0(5(x1)))))) 0(4(2(1(5(x1))))) -> 2(4(1(5(4(0(x1)))))) 0(4(2(1(5(x1))))) -> 3(0(1(5(2(4(x1)))))) 0(4(2(1(5(x1))))) -> 3(0(5(2(4(1(x1)))))) 0(4(2(1(5(x1))))) -> 4(1(3(2(5(0(x1)))))) 0(4(2(1(5(x1))))) -> 4(4(0(1(5(2(x1)))))) 0(4(5(1(5(x1))))) -> 5(4(1(5(0(4(x1)))))) Proof: Bounds Processor: bound: 2 enrichment: match automaton: final states: {6} transitions: 51(479) -> 480* 51(75) -> 76* 51(469) -> 470* 51(157) -> 158* 51(97) -> 98* 51(77) -> 78* 51(471) -> 472* 51(461) -> 462* 51(401) -> 402* 51(391) -> 392* 51(386) -> 387* 51(366) -> 367* 51(493) -> 494* 51(463) -> 464* 51(453) -> 454* 51(146) -> 147* 51(91) -> 92* 51(485) -> 486* 51(455) -> 456* 51(607) -> 608* 51(355) -> 356* 51(527) -> 528* 51(517) -> 518* 51(487) -> 488* 51(83) -> 84* 51(477) -> 478* 51(599) -> 600* 51(519) -> 520* 51(85) -> 86* 41(55) -> 56* 41(197) -> 198* 41(389) -> 390* 41(229) -> 230* 41(199) -> 200* 41(189) -> 190* 41(573) -> 574* 41(134) -> 135* 41(49) -> 50* 41(191) -> 192* 41(525) -> 526* 41(96) -> 97* 41(223) -> 224* 41(183) -> 184* 41(133) -> 134* 41(53) -> 54* 41(38) -> 39* 41(145) -> 146* 11(50) -> 51* 11(35) -> 36* 11(232) -> 233* 11(15) -> 16* 11(147) -> 148* 11(339) -> 340* 11(329) -> 330* 11(117) -> 118* 11(107) -> 108* 11(37) -> 38* 11(17) -> 18* 11(109) -> 110* 11(54) -> 55* 11(353) -> 354* 11(131) -> 132* 11(323) -> 324* 11(66) -> 67* 11(345) -> 346* 11(93) -> 94* 11(362) -> 363* 11(347) -> 348* 11(337) -> 338* 11(115) -> 116* 11(307) -> 308* 11(95) -> 96* 01(65) -> 66* 01(429) -> 430* 01(207) -> 208* 01(541) -> 542* 01(511) -> 512* 01(501) -> 502* 01(249) -> 250* 01(426) -> 427* 01(623) -> 624* 01(543) -> 544* 01(533) -> 534* 01(503) -> 504* 01(94) -> 95* 01(251) -> 252* 01(443) -> 444* 01(241) -> 242* 01(231) -> 232* 01(625) -> 626* 01(221) -> 222* 01(615) -> 616* 01(363) -> 364* 01(535) -> 536* 01(495) -> 496* 01(51) -> 52* 01(243) -> 244* 01(36) -> 37* 01(435) -> 436* 01(617) -> 618* 01(16) -> 17* 01(213) -> 214* 01(597) -> 598* 01(148) -> 149* 01(123) -> 124* 01(265) -> 266* 01(437) -> 438* 01(215) -> 216* 01(609) -> 610* 01(205) -> 206* 01(377) -> 378* 01(549) -> 550* 01(125) -> 126* 01(509) -> 510* 21(25) -> 26* 21(409) -> 410* 21(591) -> 592* 21(581) -> 582* 21(299) -> 300* 21(289) -> 290* 21(264) -> 265* 21(27) -> 28* 21(411) -> 412* 21(583) -> 584* 21(331) -> 332* 21(321) -> 322* 21(291) -> 292* 21(19) -> 20* 21(403) -> 404* 21(600) -> 601* 21(575) -> 576* 21(283) -> 284* 21(445) -> 446* 21(400) -> 401* 21(375) -> 376* 21(315) -> 316* 21(33) -> 34* 21(427) -> 428* 21(417) -> 418* 21(13) -> 14* 21(589) -> 590* 21(367) -> 368* 21(297) -> 298* 31(267) -> 268* 31(257) -> 258* 31(419) -> 420* 31(167) -> 168* 31(551) -> 552* 31(67) -> 68* 31(446) -> 447* 31(159) -> 160* 31(149) -> 150* 31(281) -> 282* 31(14) -> 15* 31(181) -> 182* 31(565) -> 566* 31(151) -> 152* 31(313) -> 314* 31(273) -> 274* 31(263) -> 264* 31(233) -> 234* 31(390) -> 391* 31(385) -> 386* 31(173) -> 174* 31(567) -> 568* 31(365) -> 366* 31(557) -> 558* 31(305) -> 306* 31(275) -> 276* 31(63) -> 64* 31(387) -> 388* 31(175) -> 176* 31(165) -> 166* 31(559) -> 560* 02(665) -> 666* 02(639) -> 640* 00(5) -> 6* 00(2) -> 6* 00(4) -> 6* 00(1) -> 6* 00(3) -> 6* 32(638) -> 639* 32(664) -> 665* 10(5) -> 1* 10(2) -> 1* 10(4) -> 1* 10(1) -> 1* 10(3) -> 1* 52(663) -> 664* 52(637) -> 638* 20(5) -> 2* 20(2) -> 2* 20(4) -> 2* 20(1) -> 2* 20(3) -> 2* 42(636) -> 637* 42(662) -> 663* 30(5) -> 3* 30(2) -> 3* 30(4) -> 3* 30(1) -> 3* 30(3) -> 3* 12(661) -> 662* 12(651) -> 652* 12(641) -> 642* 12(653) -> 654* 12(635) -> 636* 12(659) -> 660* 40(5) -> 4* 40(2) -> 4* 40(4) -> 4* 40(1) -> 4* 40(3) -> 4* 50(5) -> 5* 50(2) -> 5* 50(4) -> 5* 50(1) -> 5* 50(3) -> 5* 1 -> 249,197,175,115,85,27 2 -> 241,189,167,107,77,19 3 -> 251,199,181,117,91,33 4 -> 243,191,173,109,83,25 5 -> 231,183,165,93,75,13 14 -> 607,65,35 15 -> 527* 16 -> 49* 18 -> 250,232,95,315,599,6 20 -> 14* 26 -> 14* 28 -> 14* 34 -> 14* 36 -> 445,63,53 37 -> 419,133 39 -> 616,244,37,133,419,66,242,250,232,95,315,599,355,331,229,151,123,6 52 -> 616,244,66,242,37,133,419,250,232,95,315,599,519,6 54 -> 377* 56 -> 51* 64 -> 131,36 67 -> 223* 68 -> 37* 75 -> 653* 76 -> 283,263,205,35 77 -> 635* 78 -> 289,267,207,35 83 -> 651* 84 -> 291,273,213,35 85 -> 659* 86 -> 297,275,215,35 91 -> 641* 92 -> 299,281,221,35 94 -> 313,145 95 -> 385,157 97 -> 321* 98 -> 244,610,250,232,95,315,599,159,125,6 108 -> 94* 110 -> 94* 116 -> 94* 118 -> 94* 124 -> 616,244,66,37,133,419,242,250,232,95,315,599,6 126 -> 250,232,95,315,599,6 132 -> 16* 135 -> 616,244,66,242,250,232,95,315,599,6,17 146 -> 525,375,365,329 147 -> 597,257 150 -> 616,244,250,232,95,315,599,6 152 -> 250,232,95,315,599,6 158 -> 427,252,250,232,95,315,599,37 160 -> 250,232,95,315,599,6 166 -> 426,400,75 168 -> 429,403,75 174 -> 435,409,75 176 -> 437,411,75 182 -> 443,417,75 184 -> 609,575,75 190 -> 615,581,75 192 -> 617,583,75 198 -> 623,589,75 200 -> 625,591,75 206 -> 551,533,477,66 208 -> 557,535,479,66 214 -> 559,541,485,66 216 -> 565,543,487,66 222 -> 567,549,493,66 224 -> 37* 230 -> 250,232,95,315,599,6 232 -> 599,573,315 233 -> 389* 234 -> 95* 242 -> 232* 244 -> 232* 250 -> 232* 252 -> 232* 258 -> 51* 264 -> 307* 265 -> 362,305 266 -> 38* 268 -> 264* 274 -> 264* 276 -> 264* 282 -> 264* 284 -> 455,337,36 290 -> 461,339,36 292 -> 463,345,36 298 -> 469,347,36 300 -> 471,353,36 306 -> 265* 308 -> 36* 314 -> 323,94 316 -> 616,244,37,133,419,250,232,95,315,599,517,66 322 -> 38* 324 -> 96* 330 -> 96* 332 -> 66,242,6 338 -> 49* 340 -> 49* 346 -> 49* 348 -> 49* 354 -> 49* 356 -> 6* 364 -> 51* 368 -> 51* 376 -> 146* 378 -> 331* 388 -> 331* 392 -> 331* 401 -> 661* 402 -> 36* 404 -> 401* 410 -> 401* 412 -> 401* 418 -> 401* 420 -> 37* 428 -> 157* 430 -> 427* 436 -> 427* 438 -> 427* 444 -> 427* 446 -> 453* 447 -> 367* 454 -> 257* 456 -> 495,37 462 -> 501,37 464 -> 503,37 470 -> 509,37 472 -> 511,37 478 -> 37* 480 -> 37* 486 -> 37* 488 -> 37* 494 -> 37* 496 -> 37* 502 -> 37* 504 -> 37* 510 -> 37* 512 -> 37* 518 -> 157* 520 -> 6* 526 -> 366* 528 -> 37* 534 -> 37* 536 -> 37* 542 -> 37* 544 -> 37* 550 -> 37* 552 -> 37* 558 -> 37* 560 -> 37* 566 -> 37* 568 -> 37* 574 -> 157* 576 -> 146* 582 -> 146* 584 -> 146* 590 -> 146* 592 -> 146* 598 -> 149* 601 -> 67* 608 -> 35* 610 -> 157* 616 -> 157* 618 -> 157* 624 -> 157* 626 -> 157* 640 -> 37,133,419 642 -> 636* 652 -> 636* 654 -> 636* 660 -> 636* 666 -> 17* problem: Qed